Evaluation der Kooperationsprogramme in der Grundlagenforschung des FWF

DeGEVAL, Lüneburg, 28.09.2007

Jakob Edler (Fraunhofer ISI)

Ergebnisse eines gemeinsamen Projektes mit PREST, Manchester, John Rigby et. Al

ISI Mitarbeiter: Susanne Bührer, Vivien Lo, Rainer Bierhals

Vortrag

Der Untersuchungsgegenstand: Zwei Programme des FWF

Leitfragen

Methoden

Strukturdaten

Ergebnisse

Schlussfolgerungen

Die Programme SFB und FSP

Ziel: Förderung der Kooperation in der Grundlagenforschung

SFB: Spezialforschungsbereiche

- Entsprechen im Grundatz den deutschen Sonderforschungsbereichen
- Ein Standort-Prinzip
- Interdisziplinär (Integration, enge Kooperation)
- 10 Jahre Finanzierung

FSP (Forschungsschwerpunkte)

- Multi-Location-Prinzip, Netzwerken über Distanz (
- Multidisziplinär
- 6 Jahre Finanzierung

Leitfragen der Evaluation

- Bewertung der PROGRAMME, nicht der einzelnen Projekte:
 - Performanz / Zielerreichung insgesamt
 - Quantität, Qualität der Forschung und der Forscher
 - Struktur und Kooperation der Netzwerke (Zeitverlauf, Lernen)?
 - Zusammenhang zwischen Strukturvariablen bzw. Strukturvariablen und Zielgrößen?
 - Management / Implementation (heute nicht)
 - Angemessenheit der Programmkonzepte (Ziele Design)
 - Rolle der Programme im Fördersystem (Kontext)?

Methodenmix

- Literatur (Netzwerke und Netzwerkförderung) und Vergleichsanalyse
- Dokumentenanalyse (Antragsunterlagen, Peer Evaluationen ex ante, interim, ex post, Berichte der Netzwerke, Aktivitätslisten)
 - Selbstangaben der Netzwerke als Basis für Analyse von
 - Netzwerkstrutkuren und Kooperationen,
 - Interdisziplinarität (Breite und Konzentration)
 - Output (Bibliometrie), Input, Strukturdaten,
- Interviews (Mitglieder, Umfeld)
- Bibliometrie (relative Performanz, Unterauftrag)

Die Programme: Strukturdaten 1994 - 2004

	SFB	FSP
Budget granted total since 1994	105.848.509	32.264.416
Number of granted networks	20	14
Number of granted subprojects	247	108
total participants	2057 SFB	726 FSP
Subprojects / network	12,35	7,71
Participants / subproject	8,33	6,72
Budget granted total since 1994	105.848.509	32.264.416
Budget grant / network	5.292.425	2.304.601
Budget grant / subproject	428.536	298.911
Budget grant / subproject / granted year	58.147	65.514
budget grant / granted year / participants	6.982	9.653

Source: FWF, network reports. Compilation and calculation: Fraunhofer-ISI 2004

Bewilligungsquote: FSP: 50%, SFB 54%

Finanzierungsquote bewilligter Netzwerke: FSP 63%, SFB 61%

(Inter)Disziplinarität der Programme

- Bestimmung durch Zuordnung der Einzelprojekte in Netzwerken zur Wissenschaftskategorisierung Statistik Austria, zum Beispiel
 - Gebiet: Naturwissenschaften...
 - Disziplin (2 digit): Mathematik...
 - Subdisziplin (4 digit level): Algebra....
- Disziplinen: Naturwissenschaften überwiegen (18 von 34 bewilligten Netzwerken, höchtse Bew.quote), dann Humanities und Biomedizin (je 10)
- Größe Disziplin: Naturwissenschaftliche Netzwerke sind größer, aber nicht relativ teurer

Interdisziplinarität

Maßzahlen:

- Interdisciplinary scope:
 - misst die Breite der vorhandenen Disziplinen (Anzahl vorhandenen Subdiziplinen / Anzahl der Einzelprojekte)
 - gemessen auf 2 digit und 4 digit Niveau
- Konzentration (gini-Koeffizient): misst die Verteilung der Bedeutung von Disziplinen,
 - 0 = alle genanten Subdisziplinen sind über die Einzelprojekte eines Netzwerkes gleich oft vertreten,
 - 1 = nur eine Subdisziplin im gesamten Netzwerk vorhanden

Interdisziplinarität

Sehr große Unterschiede zwischen Netzwerken: 2 Extremfälle

	SFB 15	SFB 8
Number of Subprojects	16	12
Number of different 2 digit disciplines	2 (scope 0,125)	7 (scope 0,58)
Number of different 4 digit disciplines	7 (scope (0,43)	16 (scope (1,33)
Gini Koeffizient	0,44	0,28

- Durchschnitte bei FSP und SFB nicht sehr verschieden
 (Anzahl Disziplinen / Anzahl Subprojekte: 0,37 SFB, 0,44 FSP)
- Mit der Größe der Netzwerke sinkt der scope
- Grenzen der Interdiziplinarität: Schlecht laufende/gestoppte
 Netzwerke hatten große disziplinäre Breite (sehr hohen scope und geringe Konzentration, keine Lead-Disziplin, wenig Commitment)
- Je interdisziplinärer, desto wichtiger ist Führung, Lead-Disziplin
- Zu wenig bewusstes Management von Interdisziplinarität

Kooperationsverhalten

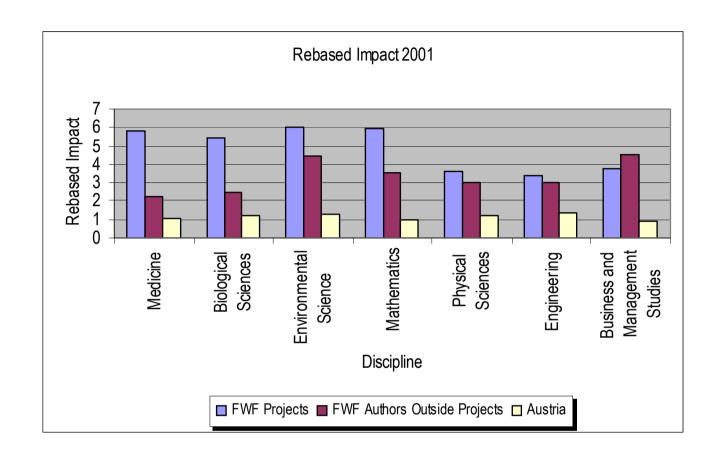
- Basis: Selbstangaben über Zusammenarbeit zwischen Einzelprojekten in den Netzwerken (über die Zeit)
- Dichte: Verhältnis tatsächlicher bilateraler Beziehungen zwischen Subprojekten und maximal möglichen Beziehungen
- SFB kooperieren etwas stärker: Dichte Durchschnitt SFB 33%, FSP 25%; hohe Varietät
- Standorte und Kooperation
 - Für FSP: Anzahl der Standorte hat keinen Einfluss
 - SFB: je mehr unterschiedliche "hosts", desto weniger Kooperation

Kooperationsverhalten

- Naturwissenschaften weniger kooperationsintensiv (Input-Output-Modell der Kooperation?)
- In großen Netzwerke wird weniger kooperiert
- Scheiternsgrund: Mangel an Kohärenz und Kooperation,
 Vorerfahrung in Kooperationen wichtiger Partner hilft
- KEIN Zusammenhang zwischen Interdisziplinarität und Kooperationsverhalten

Performanz und Effekte – Ausgewählte Ergebnisse

- Analyse der Outputs in Berichten
- Analyse aller Peer Reviews (ex ante, interim, ex post)
- Kontext Interviews
- Bibliometrie
 - Zitationsraten und Impact (normalisiert nach Disziplinen)
 - Netzwerke, außerhalb Netzwerke, Österreich
 - Internationale Ko-Publikationen
 - Zwei Stichjahre 1996 and 2001


Performanz und Effekte – Ausgewählte Ergebnisse

- Konsens: generell (sehr) gute Performanz (Peers), wichtige Struktureffekte in Österreich
- Positiv:
 - Langfristperspektiven,
 - neue Schnittstellen und Kombinationen (Lernen),
 - Profilbildung der Universities (gleichzeitig Gefahr mangelndes Commitment von Unis)
 - Qualitätskontrolle
- Zu geringe Sichtbarkeit in Österreich generell, wenig systematisches Training
- Internationale Kooperationen in Netzwerken stark zugenommen (43 % 1996 auf 55 % 2001)
- Output: Netzwerke besser (impact analysis)

Forschung in Netzwerken am höchsten zitiert

Zudem: Verbesserung der Werte von 1996 nach 2001 in Netzwerken am größten

Performanz und Effekte – Ausgewählte Ergebnisse

- Qualität (Artikelzitation unter / über dem Durchschnitt aller Zitationen in jeweiligen Disziplinen):
 - Interdisziplinarität hat keinen Einfluss auf Qualität
 - Geographische Streuung des Netzwerkes hat leicht positive Korrelation mit Performanz (Menge, Qualität)
 - Kooperationsdichte: je höher die Kooperation, desto stärker weicht die Performanz (Zitation) vom Mittelwert ab – in beide Richtungen
- Menge an Output positiv korreliert mit
 - höherer Kooperationsdichte,
 - weniger Interdisziplinarität
 - Höhere Konzentration der Sub-Disziplinen Lead-Disziplin(en)
- FSP (multi-location) besser als SFB

Schlussfolgerungen (ohne Managementaspekte)

- Performanz der Netzwerke im Durchschnit sehr gut (papers,
 Bibliometrie), relatives Budget im FWF für Netzwerke eher zu gering
- Output und behavioural additionality im Schnitt sehr gut
- Bottom up Themenfindung essenziell, top down nur interaktiv
- Angebot von konzentrierten SFB und Standort-übergreifende FSP sinnvoll, SFB = Standortentwicklung, FSP: disziplinäre Entwicklung (FSP NICHT second best)
- Interdisziplinarität nicht zum Selbstzweck machen, hohe Interdisziplinarität muss mit starker Führung einher gehen.
- Starke Führung und Commitment der Universitäten (Netzwerke als strategische Profilierung, schon ex ante – potenzielle Konflikte Uni-Führung – Wissenschaftler))
- Training Aspekte stärken (Programme)
- Sichtbarkeit verbessern

VIELEN DANK

Dr. Jakob Edler
Leiter der Abteilung
Innovationssysteme und Politik
Fraunhofer Institut für System und
Innovationsforschung
Breslauer Straße 48;
D-76139 Karlsruhe

Phone: +49(0)721/6809-129; Fax: -260

e-mail: j.edler@isi.fraunhofer.de

internet: http://www.isi.fraunhofer.de

Dr John Rigby Research Fellow PREST and the Manchester Business School The University of Manchester

Oxford Road, Manchester, M13 9PL Phone Office: +44 (0)161 275 5928

Fax Office: +44 (0)161 275 0923

Veröffentlichungen:

Edler, J. / Rigby et. Al. (2004): Research Network Programmes Evaluation ffor the Austrian Science Fund (FWF); Final Report, Karlsruhe / Manchester (Anforderungen per E-Mail, pdf Version)

Rigby, J. / Edler J. (2005): Peering inside research networks: Some observations on the effect of the intensity of collaboration on the variability of research quality; in: Research Policy; p. 784-794

Annahmen: Nutzen und Kosten wissenschaftlicher Netzwerke

• Nutzen:

- Verbindung unterschiedlicher / komplementärer Fähigkeiten und Disziplinen
- kritische Masse
- Lernen
- Diffusion
- Multiperspektive

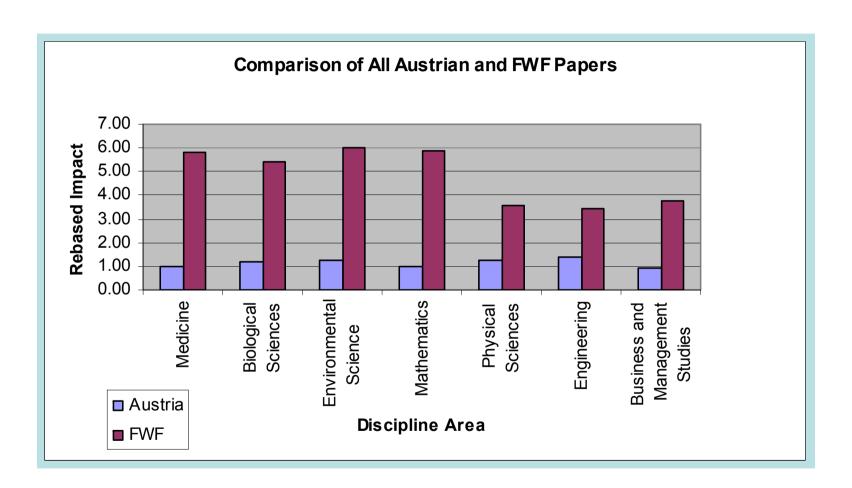
Kosten

- Management
- Anbahnungs, Kennenlern- und Lern-, Übersetzungskosten

Findings – Human Resources and Gender

	SFB	FB FSP	Ç	SFB	FSP		
311			natural sci.	non natural sci	natural sci.	non natural sci	
share of women	32,9	27,7	25,5	40,9	25,8	31,3	

Source: FWF, network reports. Compilation and calculation: Fraunhofer-ISI 2004


	SFB		FSP					
	N*	avg.** years	No***	No / network /year	N*	avg.** years	No***	No / network/ year
PhD	18	5,6	576	5,7	10	5	290	5,8
Diploma/Maste rs	19	5,2	648	6,6	11	4,6	318	6,3
Habilitations	8	7,1	40	0,7	6	6	20	0,6

^{*} number of networks for which data was available,** average duration that was covered by the reports of the SFB/FSP networks that were included in the analysis, ***no. of output Source: FWF, network reports. Compilation and calculation: Fraunhofer-ISI 2004

Netzwerkprojekte exzellenter als österreichische Forschung generell (2001)

