

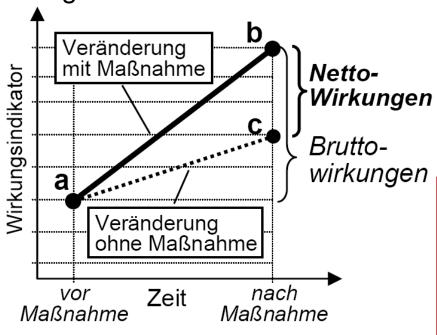
»Wirkungsmessung im Kontext von Evaluationen – Möglichkeiten und Grenzen in der Praxis«

Weiterbildungsseminar S3 im Rahmen der 19. DeGEval-Jahrestagung 21. September 2016, Salzburg

Zielsetzung

Teilnehmerlnnen kennen die verschiedenen Forschungsdesigns, deren Vor- und Nachteile und können ein Untersuchungsdesign selbst entwerfen

Wie sicher ist kausaler Einfluss?


- Ja häufiger eine Person Horrorfilme konsumiert, desto häufiger neigt sie zu Aggressivität/eigener Gewaltanwendung
 - → Einfluss Mediengewalt?
- > Arbeitslose sind häufiger krank als Nicht-Arbeitslose
 - → Folge der Arbeitslosigkeit?
- Kranke Personen, die ein Medikament erhalten, fühlen sich nach zwei Wochen deutlich besser
 - → Einfluss des Medikaments?
- > Frauen erhalten (in Dt) nur 78% des Lohns von Männern
 - → Folge von Lohndiskriminierung?
- allgemein: Personen, die an einer Maßnahme teilnehmen, sind/geht es anschließend "besser"
 - → Folge der Maßnahme?
- → Häufig wird auf Basis eines nachweisbaren **Zusammenhangs** ein *kausaler (ursächlicher) Schluss* gezogen, d.h. eine **Wirkung** von Mediengewalt, Arbeitslosigkeit, Maßnahmen abgeleitet

Was sind Wirkungen?

- Veränderungen nach Beendigung einer Maßnahme
 - → Veränderungen, die sowohl auf Maßnahme als auch beliebige Anzahl anderer Einflüsse zurückzuführen sind
 - = **Bruttowirkungen** (Differenz b-a)
- > Veränderungen, die allein auf die durchgeführte
 - Maßnahme zurückzuführen sind

 → isolierter Anteil an insgesamt
 auftretenden Veränderungen,
 die nicht beobachtbar gewesen
 wären, wenn Maßnahme nicht
 durchgeführt worden wäre
 - = Nettowirkungen oder
 Projektwirkung (Differenz b-c)
 - = kausaler Effekt
- → Zielerreichung ≠ Nettowirkung

Nettowirkungen/Kausaler Effekt

Ein vom Auftreten eines kausal wirksamen Faktors T (Maßnahme) abhängiger kausaler Effekt δ_i (Wirkung) ist die Differenz zw. dem Ereignis Y_I^i , das bei Auftreten von T(T=1) realisiert wird, und dem alternativen Ereignis Y_0^i , das ohne T(T=0) eintreten würde:

$$\delta_i = Y_1^i (X_i, T=1) - Y_0^i (X_i, T=0) = Y_1^i - Y_0^i$$

- Wirkungen sind nicht direkt beobachtbar:
 - Ereignis Y^i nur für T=1 (Y_1^i) oder T=0 (Y_0^i) beobachtbar
 - für Teilnehmer einer Maßnahme $(X_i, T=1)$ ist Ergebnis Y_0^i $(X_i, T=0)$ nicht beobachtbar (= **das Kontrafaktische**)
- Wirkungen werden anhand *durchschnittlicher* Werte *empirisch* erschlossen: $\hat{\delta} = \overline{Y}_1 \overline{Y}_0$
- Vergleich Ereignis bei Zielgruppe (ZG) und hypothetischem Ereignis, das ohne Maßnahme eingetreten wären

Nettowirkungen/Kausale Effekte

Wie können Nettowirkungen bzw. kausale Effekte analysiert werden?

- notwendig für Ableitung eines kausalen Zusammenhangs:
 - es muss Zusammenhang zwischen 2 Variablen X und Y bestehen
 - Ursache X muss Wirkung Y zeitlich vorausgehen
 - Zusammenhang zwischen X und Y darf nicht durch andere Einflüsse Z bedingt sein (andere Erklärungen des Ursache-Wirkungs-Zusammenhang müssen eindeutig ausgeschlossen werden)
- → Einflüsse Z können am eindeutigsten ausgeschlossen werden, wenn außer X und Y alle Bedingungen konstant bleiben (="Knackpunkt"!)
- → Experiment am besten geeignet:
 Prinzip der Bedingungskontrolle durch Einführung von
 Untersuchungsgruppe (UG) und Kontrollgruppe (KG)
 → Kontrollgruppe = hypothetische Veränderungen, die ohne
 Maßnahme eingetreten wären (Kontrafaktische)

Zum Experiment allgemein

- Experiment bezeichnet Untersuchungen, die Aussage über Kausalzusammenhang zweier Variablen ermöglichen
- Aspekte eines Experiments:
 - Unterscheidung der zwei Variablen X und Y in
 - → unabhängige Variable (UV, erklärende = X) und
 - → abhängige Variablen (AV, zu erklärende = Y)
 - UV muss AV zeitlich vorausgehen (Sequenz UV→AV)
 - Daten von mind. zwei Probandengruppen werden verglichen
- Vorgehensweise:
 - Einteilung der Probanden in zwei Gruppen:
 - → Untersuchungsgruppe (UG) &
 - → **Kontrollgruppe** (KG)
 - Kontrollgruppe = hypothetische Veränderungen, die ohne Maßnahme eingetreten wären (=Kontrafaktische)
 - durch Forscher/in kontrollierte Manipulation des "Stimulus" d.h. der unabhängigen Variable (UV)

Typen von Experimenten

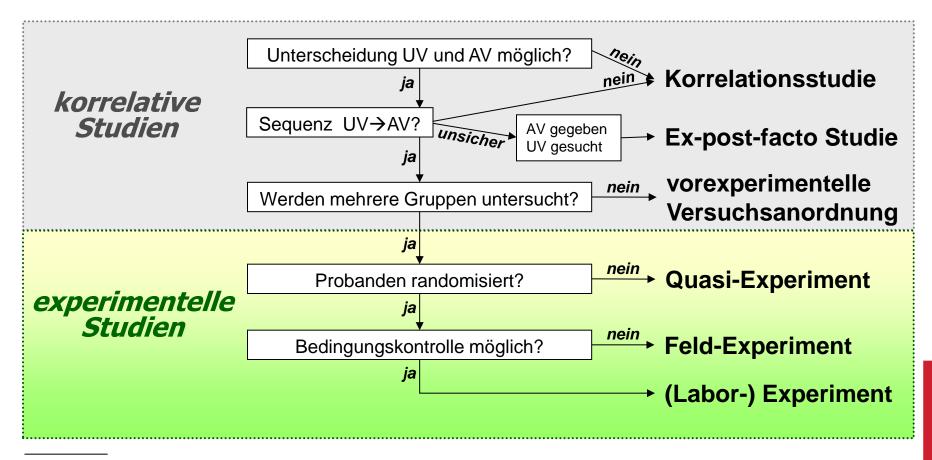
- "Echte" Experimente / randomized controlled trial (RCT)
 - (Labor-) Experiment:
 Einteilung in Untersuchungsgruppe (UG) und Kontrollgruppe (KG)
 randomisiert (→ neutralisiert personengebundene Störgrößen)
 Randbedingungen bekannt/kontrollierbar
 - Feldexperiment:
 Experiment in "natürlichem", vorhandenen Setting dennoch Logik des klassischen Experimentes (Randomisierung)

Quasi-Experiment:

- orientiert an Experimental-Logik, aber nicht alle Bedingungen des "echten" Experiments erfüllt (keine randomisierte KG)
- → Vergleichsgruppe (VG) anstatt KG!
- wird aufgrund vorhandener Eigenschaften (Alter, Geschlecht, ...)
 (re-)konstruiert (=nicht randomisiert)
- ermöglicht keine vollständige Kontrolle von Drittvariablen

Beispiel Experiment

- ➤ Konsum Horrorfilme (UV) → Aggressivität (AV)?
 - Einteilung der Probanden in zwei Gruppen: UG & KG
 → durch Randomisierung werden "Drittvariablen" neutralisiert
 - UG erhält "Stimulus": Horrorfilm (T=1)
 - KG erhält keinen "Stimulus" (T=0)
 - → hypothetische Veränderungen, die ohne Maßnahme eingetreten wären (=Kontrafaktische)
 - anschließend wird Aggressivität in beiden Gruppen gemessen
 - Unterschiede zw. Gruppen im *durchschnittlichen* aggressiven Verhalten kann eindeutig auf Horrorfilm zurückgeführt werden $\hat{\delta} = \overline{Y}_I \overline{Y}_0$ (=kausale Attribution)
 - = Nettowirkungen / kausaler Effekt
- → Umsetzung mit Hilfe angemessener Forschungsdesigns/Untersuchungsdesigns



Forschungsdesigns

- auch: Untersuchungsdesign, Untersuchungs-/Versuchsanordnung, Versuchsplan
- beschreibt, wie Fragestellung untersucht werden soll
- ➤ legt fest, wer/welche Personen wann/wie oft untersucht werden
- entscheidend für Aussagekraft der Untersuchungsergebnisse
- zwei grundsätzliche Untersuchungsansätze:
 - korrelative Studien
 - experimentelle Studien

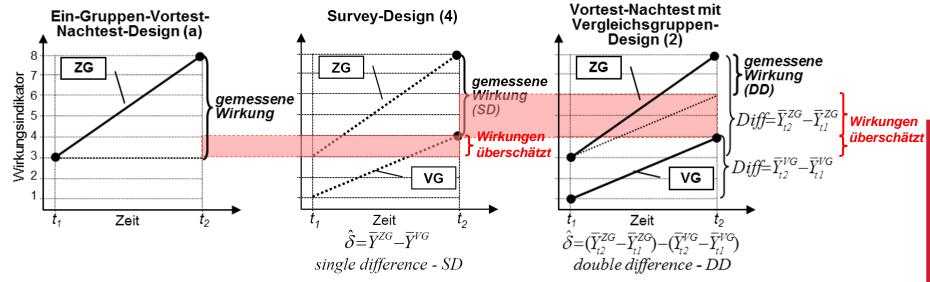
Typen von Untersuchungsansätzen

UV: unabhängige (erklärende) Variable AV: abhängige (zu erklärende) Variable

nach: Musahl/Schwennen 2000, in Anlehnung an Hager 1987

	Design	Vorher- Messung <i>t₁</i> (Baseline)	Stimulus	Nachher- Messung t ₂ (Survey)
	Experimentelle Versuchsanordnung/"randomised controlled trial" (RCT):			
	(1) Kontrollgruppen-Design	ZG _{t1}	Х	ZG _{t2}
QUALITÄT	(1) Kontrollgruppen-Design	KG _{t1}	-	KG _{t2}
	Quasi-experimentelle Versuchsachordnung:			
	(2) Vortest-Nachtest mit Vergleichsgruppen-Design	ZG _{t1}	Х	ZG _{t2}
		VG_{t1}	_	VG _{t2}
	(3) Vortest-Nachtest mit Nachtest Vergleichsgruppen-Design	ZG_{t1}	X	ZG_{t2}
			_	VG _{t2}
	(4) Survey-Design		X	ZG_{t2}
			_	VG_{t2}
	Vorexperimentelle/Nicht-experimentelle Versuchsachordnung:			
	(a) Ein-Gruppen-Vortest-Nachtest-Design	ZG _{t1}	X	ZG _{t2}
	(b) Ein-Gruppen-Nachtest-Design		Х	ZG _{t2}

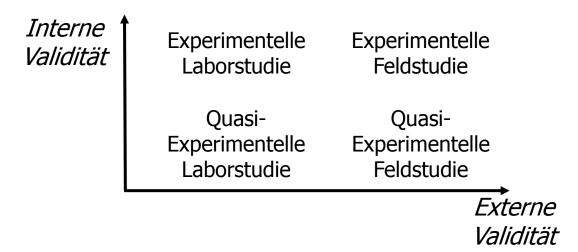
ZG: Zielgruppe, KG: Kontrollgruppe (randomisiert), t: Zeitpunkt (erste, zweite Datenerhebung/Messung),


VG: Vergleichsgruppe (nicht randomisiert)

X: Stiumulus (Projekt/Maßnahme)

Unterschiede in den geschätzten Wirkungen

- Vorexperimentelle Versuchsanordnung
 - ohne Kontrollgruppe (kontrafaktische Situation)
 - Randbedingungen unkontrolliert
- Quasi-experimentelles Design
 - mit Vergleichsgruppe, aber nur Nachher-Messung
- Quasi-experimentelles Design
 - mit Vergleichsgruppe und Vorher-Nachher-Messung



[•] Datenerhebung, ZG: Zielgruppe, VG: Vergleichsgruppe, t: Zeit (erste, zweite Datenerhebung), Diff: Differenz

Validität experimenteller Designs

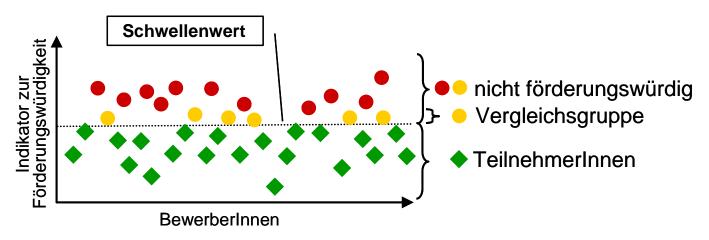
- Validität: Gültigkeit/Belastbarkeit eines aufgezeigten Ursache-Wirkungs-Zusammenhangs
- ➤ Interne Validität: gemessene Veränderungen sind eindeutig auf Veränderungen der UV (Maßnahme) zurückzuführen
- Externe Validität: Ergebnis ist auf andere Populationen, Situationen und Zeitpunkte generalisierbar

- Interne Validität gefährdet durch Störfaktoren "THIS MESS"
- Externe Validität gefährdet durch Störfaktoren "UTOS"

Umsetzungsmöglichkeiten

Erfahrungen aus der Praxis:

- angemessene Designs werden oft als unnötig anspruchsvoll oder aufgrund ethischer Vorbehalte abgelehnt
- realistische Wege, wie experimentelle oder quasi-experimentelle Designs in der Praxis angewandt werden können:
 - Matching on Observables
 - Regression Discontinuity
 - Propensity Score Matching (PSM)
 - Pipeline Approach
 - Multiple Comparison Group Design

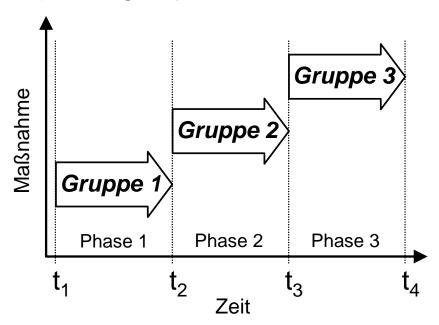

Matching on Observables

- quasi-experimentelles Design:
 - bewusste Auswahl anhand gleicher charakteristischer Merkmale (relevanter Drittvariablen) der ZG
 z.B. Alter, Zugang zu Service, Typ & Qualität Haus, ökonomische Situation, zentral/abseits gelegen, etc.
 - VG wird aus Personen, Dörfern, Regionen, Bezirken gebildet, die höchste Übereinstimmung in Eigenschaften mit ZG aufweisen
 - nicht beobachtbare Merkmale ("unobservables"), z.B. Motivation, schwer zu berücksichtigen
- Konstruktion einer VG für Nachher-Messung im Rahmen einer Evaluation möglich (t₂)
 - → "nur" single-difference (SD) möglich
- > oder bereits bei Planung
 - \rightarrow auch Vorher-Messung (t₁) \rightarrow double-difference (DD) möglich

Regression Discontinuity

- quasi-experimentelles Design: Konstruktion VG für Vorher- & Nachher-Messung
 - wenn Teilnahme an Maßnahme an bestimmte Voraussetzung mit gesetztem Schwellenwert gebunden, z.B. Einkommen, Alter, Testergebnis (Sprachtest), Leistung (Schule, Hochschule) etc.
 - wenn Erfüllung der Voraussetzung vorab überprüft wird
- VG = Personen, die Schwellenwert nur knapp nicht erreicht haben, aber sehr ähnliche Charakteristika wie ZG aufweisen

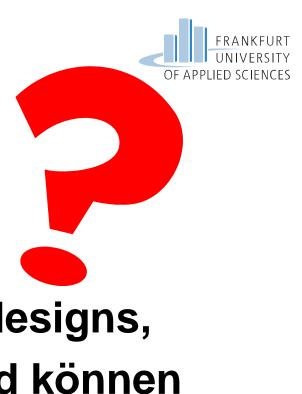
→ double-difference (DD) möglich


Propensity Score Matching (PSM)

- quasi-experimentelles Design:
 - Konstruktion VG f
 ür Vorher- & Nachher-Messung
 - wenn Daten aus allgemeinen Surveys mit interessierenden Fragen zu Zeitpunkt t₁ und t₂ existieren
 - anhand charakteristischer Merkmale werden "Ähnlichkeitsindices" geschätzt (berechnet)
 - auf Basis dieser "Ähnlichkeitsindices" wird für jede Einheit der ZG eine (oder mehrere) "passende" Einheiten aus dem Survey für VG ausgewählt, die sich bzgl. der Merkmale nicht von der ZG-Einheit unterscheidet ("statistischer Zwilling")
- → "Qualität" der VG ~ KG
- → double-difference (DD) möglich

Pipeline Verfahren

- experimentelles Design: KG für Vorher- & Nachher-Messung
 - wenn größeres Programm mit langer Laufzeit in mehreren Phasen zeitversetzt implementiert wird (Schulen, Schulklassen, Städte, Stadtteile, Dörfer, Regionen)
 - wenn keine bewusste Entscheidung darüber, warum Klassen, Stadtteile, Dörfer etc. an der ersten Phase, andere erst später teilnehmen sollen ("randomized phasing in")
- Einheiten, die erst an der
 - 2. & 3. Phase teilnehmen
 - = KG für Personen der 1. Phase
- → double-difference (DD) möglich



Wichtige Anmerkungen

- Internationale Diskussion um Wirkungsmessung bezieht sich nur auf kleinen Ausschnitt im Kontext einer Evaluation
 Trage, wie eindeutige Wirkungsmessung breibung (keusele Attribut
 - → Frage, wie *eindeutige Wirkungszuschreibung* (kausale Attribution) methodisch realisiert werden kann
- Wirkungsmessung ≠ Wirkungsevaluation!
- Wirkungsmessung notwendig, jedoch nicht hinreichend!
 - → nur "Untersuchung", ob Maßnahme wirkt oder nicht
 - → Frage nach Warum bleibt unbeantwortet "Black Box"
- > aussagekräftige Wirkungsevaluationen benötigen ebenso:
 - → Ursache-Wirkungs-Hypothesen (LogFrames incl. TOCs)
 - → qualitative Methoden: Methodenmix & Triangulation

Nur dann zeigen Wirkungsevaluationen evidenzbasierte Handlungsoptionen für die Implementation zukünftiger (Politik-) Maßnahmen auf

Reflexion

TeilnehmerInnen kennen die verschiedenen Forschungsdesigns, deren Vor- und Nachteile und können ein Untersuchungsdesign

selbst entwerfen